
Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles - National Research Council 2010-08-30 Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure
used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.

Fuel Economy News - 1983

Fundamentals of Medium/Heavy Duty Diesel Engines-Gus Wright 2021-09-01
Thoroughly updated and expanded, Fundamentals of Medium/Heavy Diesel Engines, Second Edition offers comprehensive coverage of basic concepts and fundamentals, building up to
advanced instruction on the latest technology coming to market for medium- and heavy-duty diesel engine systems.

U.S. Navy High-Speed Diesel Engine Performance Evaluation: Cummins NH-220G and Detroit Diesel 6V-53N - 2000 This report documents the performance evaluations of Detroit Diesel Corporation 6V-53N and Cummins NH-220G engines operating largely on broadened military specification fuels, MIL-F-16884H. The performance evaluations also included a fundamental study of the relationship of fuel properties to various combustion phenomena measured in one cylinder of each test engine. Included are engine and test fuel specifications, engine performance analysis, engine operating data, and test fuel data. Fuel property correlations with engine combustion variables were developed using a multivariate analysis of fuel properties with engine performance variables. The power production and fuel consumption correlations were dominated by the test point variables speed and load included as independent variables. Additional multivariate analysis performed utilizing a transformation of the independent variable load, revealed acceptable fuel property correlations for power and fuel consumption. Kinematic viscosity, net heat of combustion, specific gravity, and hydrogen content influenced the power and fuel consumption of the Cummins NH-220G. The power and fuel consumption of the Detroit Diesel Corporation 6V-53N was influenced by kinematic viscosity, net heat of combustion, specific gravity,
hydrogen content, aniline point, and boiling point distribution.

Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles-National Research Council 2015-09-28 The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research
Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.

Army- 1988

Fuel Economy News -

Fuel Economy News - 1981

The 21st Century Truck Partnership (21CTP), a cooperative research and development partnership formed by four federal agencies with 15 industrial partners, was launched in the year 2000 with high hopes that it would dramatically advance the technologies used in trucks and buses, yielding a cleaner, safer, more efficient generation of vehicles. Review of the 21st Century Truck Partnership critically examines and comments on the overall adequacy and balance of the 21CTP. The book reviews how well the program has accomplished its goals, evaluates progress in the program, and makes recommendations to improve the likelihood of the Partnership meeting its goals. Key recommendations of the book include that the 21CTP should be continued, but the future program should be revised and better balanced. A clearer goal setting strategy should be developed, and the goals should be clearly stated in measurable engineering terms and reviewed periodically so as to be based on the available funds.
High Efficiency, Clean Combustion- 2010 Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given
the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer value. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomachinery,
electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B20 (biodiesel). (5) To further improve the brake thermal efficiency of the engine as integrated into the vehicle. To demonstrate robustness and commercial viability of the HECC engine technology as integrated into the vehicles. The Cummins HECC program supported the Advanced Combustion Engine R & D and Fuels Technology initiatives of the DoE Vehicle Technologies Multi-Year Program Plan (MYPP). In particular, the HECC project goals enabled the DoE Vehicle Technologies Program (VTP) to meet energy-efficiency improvement targets for
advanced combustion engines suitable for passenger and commercial vehicles, as well as addressing technology barriers and R & D needs that are common between passenger and commercial vehicle applications of advanced combustion engines.

Technical Data Digest United States. Army Air Forces 1941

Reducing the Fuel Consumption and Greenhouse Gas Emissions of Medium- and Heavy-Duty Vehicles, Phase Two National Research Council 2014-10-02 Medium- and heavy-duty trucks, motor coaches, and transit buses - collectively, "medium- and heavy-duty vehicles", or MHDVs - are used in every sector of the economy. The fuel consumption and greenhouse gas emissions of MHDVs have become a focus of legislative and regulatory action in the past few years. Reducing the Fuel Consumption and Greenhouse Gas Emissions of Medium- and Heavy-Duty Vehicles, Phase Two is a follow-on to the National Research Council's 2010 report, Technologies and Approaches to Reducing the Fuel Consumption of Medium-and Heavy-Duty Vehicles. That report provided a series of findings and recommendations on the development of regulations for reducing fuel consumption of MHDVs. This report comprises the first periodic, five-year follow-on to the 2010 report. Reducing the Fuel Consumption and Greenhouse Gas Emissions of Medium- and Heavy-Duty Vehicles...
Vehicles, Phase Two reviews NHTSA fuel consumption regulations and considers the technological, market and regulatory factors that may be of relevance to a revised and updated regulatory regime taking effect for model years 2019-2022. The report analyzes and provides options for improvements to the certification and compliance procedures for medium- and heavy-duty vehicles; reviews an updated analysis of the makeup and characterization of the medium- and heavy-duty truck fleet; examines the barriers to and the potential applications of natural gas in class 2b through class 8 vehicles; and addresses uncertainties and performs sensitivity analyses for the fuel consumption and cost/benefit estimates.

Information Circular

Summary of Combustion Products from Mine Materials - Margaret R. Egan 1990

Advanced Materials--outlook and Information Requirements - Louis J. Sousa 1990
Thermal Barrier Coating Workshop- 1995

How to Tune and Modify Engine Management Systems-Jeff Hartman 2004-02-13
Drawing on a wealth of knowledge and experience and a background of more than 1,000 magazine articles on the subject, engine control expert Jeff Hartman explains everything from the basics of engine management to the building of complicated project cars. Hartman has substantially updated the material from his 1993 MBI book Fuel Injection (0-879387-43-2) to address the incredible developments in automotive fuel injection technology from the past decade, including the multitude of import cars that are the subject of so much hot rodding today. Hartman's text is extremely detailed and logically arranged to help readers better understand this complex topic.

NASA Activities- 1980

United States Army Combat Forces Journal- 1988
Popular Mechanics- 1934-07 Popular Mechanics inspires, instructs and influences readers to help them master the modern world. Whether it’s practical DIY home-improvement tips, gadgets and digital technology, information on the newest cars or the latest breakthroughs in science -- PM is the ultimate guide to our high-tech lifestyle.

Department of the Interior and Related Agencies Appropriations for …-United States. Congress. Senate. Committee on Appropriations 2005

Towards Green Marine Technology and Transport-Carlos Guedes Soares 2015-09-04 Towards Green Marine Technology and Transport covers recent developments in marine technology and transport. The book brings together a selection of papers reflecting fundamental areas of recent research and development in the fields of ship hydrodynamics, marine structures, ship design, shipyard technology, ship machinery, maritime
transportation,

War Department Technical Manual- 1944

Technical Manual-United States. War Department 1944

MotorBoating- 2005-03

Diesel and Gas Engine Progress- 1961

Environmental Issues and Waste Management in Energy and Mineral Production- A.K. Mehrotra 2000-01-01 This collection of proceedings from the 6th International Symposium provide a forum for the presentation, discussion and debate of state-of-the-art and emerging technology in the field of environmental management.
Related with Cummins Diesel Engine Fuel Consumption Chart:

Generac Manual 8000 Exl

Gitman Financial Management 13 Edition

George Van Eps Harmonic Mechanisms Guitar Volume 2 Harmonic Mechanisms For Guitar
Read Online Cummins Diesel Engine Fuel Consumption Chart

Yeah, reviewing a books cummins diesel engine fuel consumption chart could grow your close friends listings. This is just one of the solutions for you to be successful. As understood, attainment does not suggest that you have fantastic points.

Comprehending as skillfully as treaty even more than further will allow each success. neighboring to, the revelation as without difficulty as perception of this cummins diesel engine fuel consumption chart can be taken as with ease as picked to act.

Homepage